Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.
نویسندگان
چکیده
Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the -25% and -50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 +/- 0.8, 11.2 +/- 0.9, and 15.8 +/- 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil 02 availability and through responses to elevated DOM concentrations.
منابع مشابه
Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.
Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical ...
متن کاملThreshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments
Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mecha...
متن کاملIncreased litterfall in tropical forests boosts the transfer of soil CO¡sub¿2¡/sub¿ to the atmosphere
The Open University's repository of research publications and other research outputs Increased litterfall in tropical forests boosts the transfer of soil CO¡sub¿2¡/sub¿ to the atmosphere Journal Article Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse...
متن کاملNutrient regulation of organic matter decomposition in a tropical rain forest.
Terrestrial biosphere-atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle's response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence...
متن کاملSoil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya
[1] N2O, CH4 and CO2 soil-atmosphere exchange and controlling environmental factors were studied for a 3-month period (dry-wet season transition) at the Kakamega Rain forest, Kenya, Africa, using an automated measurement system. The mean N2O emission was 42.9 ± 0.7 mg N m 2 h 1 (range: 1.1–324.8 mg N m 2 h ). Considering the duration of dry and wet season the annual N2O emission was estimated a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 91 8 شماره
صفحات -
تاریخ انتشار 2010